Multipliers of the Hardy space H 1 and

نویسنده

  • Gilles Pisier
چکیده

We study the space of functions ϕ: IN → C such that there is a Hilbert space H, a power bounded operator T in B(H) and vectors ξ, η in H such that ϕ(n) = T n ξ, η. This implies that the matrix (ϕ(i + j)) i,j≥0 is a Schur multiplier of B(ℓ 2) or equivalently is in the space (ℓ 1 ∨ ⊗ ℓ 1) *. We show that the converse does not hold, which answers a question raised by Peller [Pe]. Our approach makes use of a new class of Fourier multipliers of H 1 which we call " shift-bounded ". We show that there is a ϕ which is a " completely bounded " multiplier of H 1 , or equivalently for which (ϕ(i + j)) i,j≥0 is a bounded Schur multiplier of B(ℓ 2), but which is not " shift-bounded " on H 1. We also give a characterization of " completely shift-bounded " multipliers on H 1 .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multipliers on Spaces of Analytic Functions

In the paper we find, for certain values of the parameters, the spaces of multipliers ( H(p, q, α), H(s, t, β) ) and ( H(p, q, α), ls ) , where H(p, q, α) denotes the space of analytic functions on the unit disc such that (1 − r)Mp(f, r) ∈ Lq( dr 1−r ). As corollaries we recover some new results about multipliers on Bergman spaces and Hardy spaces. §0. Introduction. Given two sequence spaces X ...

متن کامل

Bilateral composition operators on vector-valued Hardy spaces

Let $T$ be a bounded operator on the Banach space $X$ and $ph$ be an analytic self-map of the unit disk $Bbb{D}$‎. ‎We investigate some operator theoretic properties of‎ ‎bilateral composition operator $C_{ph‎, ‎T}‎: ‎f ri T circ f circ ph$ on the vector-valued Hardy space $H^p(X)$ for $1 leq p leq‎ ‎+infty$.‎ ‎Compactness and weak compactness of $C_{ph‎, ‎T}$ on $H^p(X)$‎ ‎are characterized an...

متن کامل

Flag Hardy Spaces and Marcinkiewicz Multipliers on the Heisenberg Group: an Expanded Version

Marcinkiewicz multipliers are L bounded for 1 < p < ∞ on the Heisenberg group H ≃ C × R (D. Muller, F. Ricci and E. M. Stein [25], [26]). This is surprising in that this class of multipliers is invariant under a two parameter group of dilations on C × R, while there is no two parameter group of automorphic dilations on H. This lack of automorphic dilations underlies the inability of classical o...

متن کامل

$L_{p;r} $ spaces: Cauchy Singular Integral, Hardy Classes and Riemann-Hilbert Problem in this Framework

In the present work the space  $L_{p;r} $ which is continuously embedded into $L_{p} $  is introduced. The corresponding Hardy spaces of analytic functions are defined as well. Some properties of the functions from these spaces are studied. The analogs of some results in the classical theory of Hardy spaces are proved for the new spaces. It is shown that the Cauchy singular integral operator is...

متن کامل

Some topologies on the space of quasi-multipliers

‎Assume that $A$ is a Banach algebra‎. ‎We define the‎ ‎$beta-$topology and the $gamma-$topology on the space $QM_{el}(A^{*})$ of all bounded extended left quasi-multipliers of $A^{*}.$‎ ‎We establish further properties of $(QM_{el}(A^{*}),gamma)$ when $A$ is a $C^{*}-$algebra‎. ‎In particular‎, ‎we characterize the $gamma-$dual‎ ‎of $QM_{el}(A^{*})$ and prove that $(QM_{el}(A^{*}),gamma)^{*},$...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000